Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611766

RESUMO

Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.


Assuntos
Osteoartrite , Humanos , Osteoartrite/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Apoptose , Anti-Inflamatórios não Esteroides , Disponibilidade Biológica
2.
Biomed Pharmacother ; 174: 116570, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599063

RESUMO

Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.

3.
Sci Rep ; 14(1): 5078, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429394

RESUMO

Ferroptosis is a recently identified form of programmed cell death that plays an important role in the pathophysiological process of osteoarthritis (OA). Herein, we investigated the protective effect of moderate mechanical stress on chondrocyte ferroptosis and further revealed the internal molecular mechanism. Intra-articular injection of sodium iodoacetate (MIA) was conducted to induce the rat model of OA in vivo, meanwhile, interleukin-1 beta (IL-1ß) was treated to chondrocytes to induce the OA cell model in vitro. The OA phenotype was analyzed by histology and microcomputed tomography, the ferroptosis was analyzed by transmission electron microscope and immunofluorescence. The expression of ferroptosis and cartilage metabolism-related factors was analyzed by immunohistochemical and Western blot. Animal experiments revealed that moderate-intensity treadmill exercise could effectively reduce chondrocyte ferroptosis and cartilage matrix degradation in MIA-induced OA rats. Cell experiments showed that 4-h cyclic tensile strain intervention could activate Nrf2 and inhibit the NF-κB signaling pathway, increase the expression of Col2a1, GPX4, and SLC7A11, decrease the expression of MMP13 and P53, thereby restraining IL-1ß-induced chondrocyte ferroptosis and degeneration. Inhibition of NF-κB signaling pathway relieved the chondrocyte ferroptosis and degeneration. Meanwhile, overexpression of NF-κB by recombinant lentivirus reversed the positive effect of CTS on chondrocytes. Moderate mechanical stress could activate the Nrf2 antioxidant system, inhibit the NF-κB p65 signaling pathway, and inhibit chondrocyte ferroptosis and cartilage matrix degradation by regulating P53, SLC7A11, and GPX4.


Assuntos
Ferroptose , Osteoartrite , Estresse Mecânico , Animais , Ratos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Microtomografia por Raio-X , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia
4.
J Cell Mol Med ; 28(8): e18278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546623

RESUMO

Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.


Assuntos
Neoplasias Ósseas , Doenças Musculoesqueléticas , Osteoporose , Humanos , Fatores de Transcrição , Fatores de Transcrição Kruppel-Like/genética
5.
Exp Gerontol ; 185: 112336, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042379

RESUMO

The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-ß signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
6.
Front Bioeng Biotechnol ; 11: 1290870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130826

RESUMO

Due to the poor bioavailability and high joint clearance of drugs, sustained delivery of therapeutic agents has proven difficult in the treatment of osteoarthritis (OA). Intra-articular (IA) drug delivery strategy is an attractive option for enhancing OA patients' prognosis, for which various polymer materials have been used as drug carriers due to their attractive delivery properties, to slow or even reverse the progress of OA by prolonging the duration of therapeutic agent residence in the joint. This article focuses on the recent developments in natural and synthetic polymer-based microsphere drug delivery systems for treating knee osteoarthritis. It evaluates the translational potential of some novel formulations for clinical application.

7.
Front Pharmacol ; 14: 1249418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790808

RESUMO

Osteoporosis (OP) is one of the most common metabolic skeletal disorders and is commonly seen in the elderly population and postmenopausal women. It is mainly associated with progressive loss of bone mineral density, persistent deterioration of bone microarchitecture, and increased fracture risk. To date, drug therapy is the primary method used to prevent and treat osteoporosis. However, long-term drug therapy inevitably leads to drug resistance and specific side effects. Therefore, researchers are constantly searching for new monomer compounds from natural plants. As a candidate for the treatment of osteoporosis, curcumin (CUR) is a natural phenolic compound with various pharmacological and biological activities, including antioxidant, anti-apoptotic, and anti-inflammatory. This compound has gained research attention for maintaining bone health in various osteoporosis models. We reviewed preclinical and clinical studies of curcumin in preventing and alleviating osteoporosis. These results suggest that if subjected to rigorous pharmacological and clinical trials, naturally-derived curcumin could be used as a complementary and alternative medicine for the treatment of osteoporosis by targeting osteoporosis-related mechanistic pathways. This review summarizes the mechanisms of action and potential therapeutic applications of curcumin in the prevention and mitigation of osteoporosis and provides reference for further research and development of curcumin.

8.
Front Immunol ; 14: 1168799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020556

RESUMO

Osteoarthritis (OA) is a common disabling disease which has a high incidence rate in the elderly. Studies have found that many factors are involved in the pathogenesis of OA. Hypoxia-inducible factors (HIFs) are core regulators that induce hypoxia genes, repair the cellular oxygen environment, and play an important role in the treatment of OA. For example, HIF-1α can maintain the stability of the articular cartilage matrix, HIF-2α is able to cause chondrocyte apoptosis and intensify in-flammatory response, and HIF-3α may be the target gene of HIF-1α and HIF-2α, thereby playing a negative regulatory role. This review examines the mechanism of HIFs in cartilage extracellular matrix degradation, apoptosis, inflammatory reaction, autophagy and then further expounds on the roles of HIFs in OA, consequently providing theoretical support for the pathogenesis of OA and a new target for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Idoso , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia/metabolismo
9.
Cell Commun Signal ; 21(1): 67, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013568

RESUMO

Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo
10.
Front Physiol ; 14: 1071005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926189

RESUMO

Osteoporosis (ops) is a systemic degenerative bone disease characterized by bone mass reduction, bone mineral density loss, bone microstructure destruction, bone fragility, and increased fracture susceptibility. Thus far, drug therapy is the main method used to prevent and treat osteoporosis. However, long-term drug treatment will inevitably lead to drug resistance and certain side effects. In response, rehabilitation treatment is generally recommended, which involves drug supplementation combined with the treatment. A Chinese traditional fitness exercise is an organic combination of sports and traditional Chinese medicine with a series of advantages such as being safe, convenient, non-toxic, and harmless. Hence, it is one of the rehabilitation methods widely used in clinical practice. By searching the CNKI, PubMed, Web of Science, Embase, Cochrane Library, and other relevant databases, our research clarifies the current situation of four kinds of Chinese traditional fitness exercises widely used in clinical practice, namely, Taijiquan, Baduanjin, Wuqinxi, and Yijin Jing. In addition, the molecular mechanism of osteoporosis is summarized in this study. Based on the research, Chinese traditional fitness exercises are expected to directly stimulate the bone through a mechanical load to improve bone density. Moderate and regular traditional Chinese fitness exercises also improve osteoporosis by regulating the endocrine system with the secretion of hormones and factors such as estrogen and irisin, which are beneficial for bone formation. Finally, the purpose of promoting bone formation, reducing bone loss, and preventing and treating osteoporosis is achieved. The various means of Chinese traditional fitness exercises have different emphases, and the effect of improving bone density differs in various parts of the body. The exercisers may choose the exercise flexibly based on their own needs. Chinese traditional fitness exercises can improve the bone density of the exercisers and relieve pain, improve balance, and regulate the psychological state. Consequently, it is worth promoting to be applied in clinical practices.

11.
Front Aging Neurosci ; 14: 987732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247995

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, the prevalence of OA is increasing, and the elderly are the most common in patients with OA. OA has a severe impact on the daily life of patients, this increases the demand for treatment of OA. In recent years, the application of non-invasive brain stimulation (NIBS) has attracted extensive attention. It has been confirmed that NIBS plays an important role in regulating cortical excitability and oscillatory rhythm in specific brain regions. In this review, we summarized the therapeutic effects and mechanisms of different NIBS techniques in OA, clarified the potential of NIBS as a treatment choice for OA, and provided prospects for further research in the future.

12.
Front Aging Neurosci ; 14: 934406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062149

RESUMO

Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years-a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.

14.
Phytomedicine ; 105: 154347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35914361

RESUMO

BACKGROUND: With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE: This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS: Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS: According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1ß, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/ß-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION: The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.


Assuntos
Osteoartrite do Joelho , Plantas Medicinais , Humanos , NF-kappa B , Fosfatidilinositol 3-Quinases , Extratos Vegetais
15.
Cell Prolif ; 55(10): e13294, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35735243

RESUMO

BACKGROUND: Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction between m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS: A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, osteoporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS: Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION: m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.


Assuntos
Neoplasias Ósseas , Degeneração do Disco Intervertebral , MicroRNAs , Osteoartrite , Osteoporose , Osteossarcoma , RNA Longo não Codificante , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Humanos , Metilação , Osteoartrite/genética , RNA Circular , RNA não Traduzido/genética
16.
JMIR Serious Games ; 10(3): e37026, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575761

RESUMO

BACKGROUND: COVID-19 has spread worldwide and generated tremendous stress on human beings. Unfortunately, it is often hard for distressed individuals to access mental health services under conditions of restricted movement or even lockdown. OBJECTIVE: The study first aims to develop an online digital intervention package based on a commercially released coloring game. The second aim is to test the effectiveness of difference intervention packages for players to increase subjective well-being (SWB) and reduce anxiety during the pandemic. METHODS: An evidence-based coloring intervention package was developed and uploaded to an online coloring game covering almost 1.5 million players worldwide in January 2021. Players worldwide participated to color either 4 rounds of images characterized by awe, pink, nature, and blue or 4 rounds of irrelevant images. Participants' SWB and anxiety and the perceived effectiveness of the game in reducing anxiety (subjective effectiveness [SE]) were assessed 1 week before the intervention (T1), after the participants completed pictures in each round (T2-T5), and after the intervention (T6). Independent 2-tailed t tests were conducted to examine the general intervention (GI) effect and the intervention effect of each round. Univariate analysis was used to examine whether these outcome variables were influenced by the number of rounds completed. RESULTS: In total, 1390 players worldwide responded and completed at least 1 assessment. Overall, the GI group showed a statistical significantly greater increase in SWB than the general control (GC) group (N=164, t162=3.59, Cohen d=0.59, 95% CI 0.36-1.24, P<.001). Compared to the control group, the best effectiveness of the intervention group was seen in the awe round, in which the increase in SWB was significant (N=171, t169=2.51, Cohen d=0.39, 95% CI 0.10-0.82, P=.01), and players who colored all 4 pictures had nearly significant improvements in SWB (N=171, F4,170=2.34, partial ŋ2=0.053, P=.06) and a significant decrease in anxiety (N=171, F4,170=3.39, partial ŋ2=0.075, P=.01). CONCLUSIONS: These data indicate the effectiveness of online psychological interventions, such as coloring games, for mental health in the specific period. They also show the feasibility of applying existing commercial games embedded with scientific psychological interventions that can fill the gap in mental crises and services for a wider group of people during the pandemic. The results would inspire innovations to prevent the psychological problems caused by public emergencies and encourage more games, especially the most popular ones, to take more positive action for the common crises of humankind.

17.
Front Aging Neurosci ; 14: 854026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592699

RESUMO

Osteoarthritis (OA) has a very high incidence worldwide and has become a very common joint disease in the elderly. Currently, the treatment methods for OA include surgery, drug therapy, and exercise therapy. In recent years, the treatment of certain diseases by exercise has received increasing research and attention. Proper exercise can improve the physiological function of various organs of the body. At present, the treatment of OA is usually symptomatic. Limited methods are available for the treatment of OA according to its pathogenesis, and effective intervention has not been developed to slow down the progress of OA from the molecular level. Only by clarifying the mechanism of exercise treatment of OA and the influence of different exercise intensities on OA patients can we choose the appropriate exercise prescription to prevent and treat OA. This review mainly expounds the mechanism that exercise alleviates the pathological changes of OA by affecting the degradation of the ECM, apoptosis, inflammatory response, autophagy, and changes of ncRNA, and summarizes the effects of different exercise types on OA patients. Finally, it is found that different exercise types, exercise intensity, exercise time and exercise frequency have different effects on OA patients. At the same time, suitable exercise prescriptions are recommended for OA patients.

18.
World J Gastrointest Oncol ; 14(1): 319-333, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35116119

RESUMO

BACKGROUND: Cancer-related fatigue (CRF) is the most common concomitant symptom in the treatment of colorectal cancer (CRC). Such patients often present with subjective fatigue state accompanied by cognitive dysfunction, which seriously affects the quality of life of patients. AIM: To explore the effects of cognitive behavior therapy (CBT) combined with Baduanjin exercise on CRF, cognitive impairment, and quality of life in patients with CRC after chemotherapy, and to provide a theoretical basis and practical reference for rehabilitation of CRC after chemotherapy. METHODS: Fifty-five patients with CRC after radical resection and chemotherapy were randomly divided into either an experimental or a control group. The experimental group received the intervention of CBT combined with exercise intervention for 6 mo, and indicators were observed and measured at baseline, 3 mo, and 6 mo to evaluate the intervention effect. RESULTS: Compared with the baseline values, in the experimental group 3 mo after intervention, cognitive function, quality of life score, and P300 amplitude and latency changes were significantly better (P < 0.01). Compared with the control group, at 3 mo, the experimental group had significant differences in CRF, P300 amplitude, and quality of life score (P < 0.05), as well as significant differences in P300 latency and cognitive function (P < 0.01). Compared with the control group, at 6 mo, CRF, P300 amplitude, P300 latency, cognitive function and quality of life score were further improved in the experimental group, with significant differences (P < 0.01). The total score of CRF and the scores of each dimension were negatively correlated with quality of life (P < 0.05), while the total score of cognitive impairment and the scores of each dimension were positively correlated with quality of life (P < 0.05). CONCLUSION: CBT combined with body-building Baduanjin exercise can improve CRF and cognitive impairment in CRC patients after chemotherapy, and improve their quality of life.

19.
Front Immunol ; 13: 810317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197980

RESUMO

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.


Assuntos
RNA Longo não Codificante/genética , Artrite Reumatoide/metabolismo , Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , RNA Circular , RNA Mensageiro/genética , Transcriptoma
20.
Front Mol Neurosci ; 15: 1091402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683849

RESUMO

Post-stroke pain (PSP) is a common complication after stroke and affects patients' quality of life. Currently, drug therapy and non-invasive brain stimulation are common treatments for PSP. Given the poor efficacy of drug therapy and various side effects, non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS), has been accepted by many patients and attracted the attention of many researchers because of its non-invasive and painless nature. This article reviews the therapeutic effect of rTMS on PSP and discusses the possible mechanisms. In general, rTMS has a good therapeutic effect on PSP. Possible mechanisms of its analgesia include altering cortical excitability and synaptic plasticity, modulating the release of related neurotransmitters, and affecting the structural and functional connectivity of brain regions involved in pain processing and modulation. At present, studies on the mechanism of rTMS in the treatment of PSP are lacking, so we hope this review can provide a theoretical basis for future mechanism studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...